Космический лифт

Косми́ческий лифт — концепция инженерного сооружения для безракетного запуска грузов в космос. Данная гипотетическая конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции, находящейся на ГСО. Впервые подобную мысль высказал Константин Циолковский в 1895 году[1][2], детальную разработку идея получила в трудах Юрия Арцутанова. В 2006 году космический лифт получил второе рождение. Павел Бурков создал проект лифта, особым затруднением стал вопрос о прочности и легкости троса. Также он предложил использовать плоские ленты, переплетенные в одну более широкую. Таким образом трос станет гораздо прочнее при его весе. Но вскоре проект был отвергнут. В конце 2007 года японские ученые заявили о желании запустить на орбиту космический лифт. Предположительно, такой способ в перспективе может быть на порядки дешевле использования ракет-носителей.

Трос удерживается одним концом на поверхности планеты (Земли), а другим — в неподвижной над планетой точке выше геостационарной орбиты (ГСО) за счёт центробежной силы. По тросу поднимается подъёмник, несущий полезный груз. При подъёме груз будет ускоряться за счёт вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли. В идеале, использование идеи «Космического лифта» проявит себя на Луне, или Марсе.

От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом. Если допустить пригодность их для изготовления троса, то создание космического лифта является решаемой инженерной задачей, хотя и требует использования передовых разработок и больших затрат иного рода. НАСА уже финансирует соответствующие разработки американского Института научных исследований, включая разработку подъёмника, способного самостоятельно двигаться по тросу[3].

Конструкция

Space elevator structural diagram ru.svg

Есть несколько вариантов конструкции. Почти все они включают основание (базу), трос (кабель), подъёмники и противовес.

В рабочем положении весь трос и является противовесом.

Основание

Основание космического лифта — это одно или несколько мест на поверхности планеты, где прикреплён трос и начинается подъём груза. Они могут быть подвижными, размещёнными на плавающих платформах. Например: Одна во Владивостоке — другая на соответствующей широте в южном полушарии.

Преимущество подвижного основания — возможность совершения манёвров для уклонения от ураганов и бурь. Преимущества стационарной базы — более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту.

Дополнительно к основанию может быть размещена площадка на стратостатах, для уменьшения веса нижней части троса с возможностью изменения высоты для избежания наиболее бурных потоков воздуха, а также гашения излишних колебаний по всей длине троса.

Трос

Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности и иметь форму конуса выходящего вершиной за ГСО. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65-120 гигапаскалей.

Для сравнения, прочность большинства видов стали — около 1 ГПа, и даже у прочнейших её видов — не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6—4,1 ГПа, а у кварцевого волокна — до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немного выше.

Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем её компоненты. Исследования по улучшению чистоты материала трубок и по созданию разных их видов продолжаются.

В эксперименте учёных из Университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 — кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм.[4]

Технология плетения таких волокон ещё только зарождается.

По заявлениям некоторых учёных[5], даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.

Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу[6]. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику в качестве контактной шины.

В июне 2013 года инженеры из Колумбийского университета США сообщили о новом прорыве: благодаря новой технологии получения графена удается получать листы, с размером по диагонали в несколько десятков сантиметров и прочностью лишь на 10 % меньше теоретической.[7]

Утолщение троса

Можно показать, что с учётом гравитации Земли и центробежной силы (но не учитывая меньшее влияние Луны и Солнца), сечение троса в зависимости от высоты будет описываться следующей формулой:Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой — прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других — выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

 A(r) = A_{0} exp left[ frac{rho}{s} left[ begin{matrix}frac{1}{2}end{matrix} omega^{2} (r_{0}^{2} - r^2) + g_{0}r_{0} (1 - frac{r_{0}}{r}) right] right]

Здесь  A(r)  — площадь сечения троса как функция расстояния  r от центра Земли.

В формуле используются следующие константы:

  •  A_{0}  — площадь сечения троса на уровне поверхности Земли.
  •  rho  — плотность материала троса.
  •  s  — предел прочности материала троса.
  •  omega  — круговая частота вращения Земли вокруг своей оси, 7,292·10−5 радиан в секунду.
  •  r_{0}  — расстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли, 6 378 км.
  •  g_{0}  — ускорение свободного падения у основания троса, 9,780 м/с².

Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув в конце концов геостационарной орбиты. После этого толщина снова начинает уменьшаться.

Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:  frac{A(r_{mathrm{GEO}})}{A_0} = exp left[ frac{rho}{s} times 4,832 times 10^{7} , mathrm{ frac{m^2}{s^2} } right]

Подставив сюда плотность и прочность стали и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

  • Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.
  • Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО. Тот же расчет, выполненный из предположения, что плотность троса равна плотности углеволокна ρ = 1,9 г/см3 (1900 кг/м3), с предельной прочностью σ = 90 ГПА (90·109 Па) и диаметром троса у основания 1 см (0.01 м), позволяет получить диаметр троса на ГСО всего 9 см.
  • Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км[8], которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.
  • Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.

Ещё способ — сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20—25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха). Также есть идея вместо троса из нанотрубок использовать условные силовые линии магнитного поля Земли [1].

Противовес

Противовес может быть создан двумя способами — путём привязки тяжёлого объекта (например, астероида, космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант интересен тем, что с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

Горизонтальная скорость каждого участка троса растёт с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости. Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость).

При движении подъёмника вверх лифт наклоняется на 1 градус, поскольку верхняя часть лифта движется вокруг Земли быстрее, чем нижняя (эффект Кориолиса). Масштаб не сохранен

Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении (см. диаграмму) — за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину, и противовес на существенно большую величину, в результате замедления вращения противовеса трос начнет наматываться на землю.

В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадёт.

К моменту достижения грузом геостационарной орбиты (ГСО) его угловой момент достаточен для вывода груза на орбиту. Если груз не высвободить с троса, то остановившись вертикально на уровне ГСО, он будет находиться в состоянии неустойчивого равновесия, а при бесконечно малом толчке вниз, сойдет с ГСО и начнет опускаться на Землю с вертикальным ускорением, при этом замедляясь в горизонтальном направлении. Потеря кинетической энергии от горизонтальной составляющей при спуске будет передаваться через трос угловому моменту вращения Земли, ускоряя её вращение. При толчке вверх груз также сойдет с ГСО, но в противоположном направлении, то есть начнет подниматься по тросу с ускорением от Земли, достигнув конечной скорости на конце троса. Поскольку конечная скорость зависит от длины троса, её величина таким образом может быть задана произвольно. Следует отметить, что ускорение и прирост кинетической энергии груза при подъёме, то есть его раскручивание по спирали, будут происходить за счет вращения Земли, которое при этом замедлится. Данный процесс полностью обратим, то есть если на конец троса надеть груз и начать его опускать, сжимая по спирали, то угловой момент вращения Земли соответственно увеличится.

При спуске груза будет происходить обратный процесс, наклоняя трос на восток.

Запуск в космос

На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну. Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему. Это произойдёт за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта.

Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.

Строительство

Строительство ведётся с Земли. Отдельные участки троса последовательно подаются системой «ракета-гарпун» и состыковываются в одну линию. Протяжное устройство, находящееся на геостационарной орбите, уравновешивает конструкцию.

Экономия от использования космического лифта

Предположительно, космический лифт позволит намного снизить затраты на посылку грузов в космос. Строительство космических лифтов обойдётся дорого, но их операционные расходы невелики, поэтому их разумнее всего использовать в течение длительного времени для очень больших объёмов груза. В настоящее время рынок запуска грузов может быть недостаточно велик, чтобы оправдать строительство лифта, но резкое уменьшение цены должно привести к расширению рынка. Только выполнение программ по упорядочению орбитальных полетов в околоземном пространстве, избавления от космического мусора и земных ядерных отходов потребует строительства дополнительных лифтов. Надежные точки подвески конструкций позволят инженерам создавать сооружения функции вид и масштаб которых трудно представить.

 Таким же образом оправдывает себя прочая транспортная инфраструктура — шоссе и железные дороги. Поскольку львиную долю грузов будет составлять топливо, целесообразно снабдить лифт "шлангопроводом".

Поскольку неясны цели освоения околоземного пространства — нет ответа на вопрос, вернёт ли космический лифт вложенные в него деньги. Дальнейшее развитие ракетной техники следует продолжать.

Однако лифт может быть гибридным проектом и помимо функции доставки груза на орбиту оставаться базой для других научно-исследовательских и коммерческих программ, не связанных с транспортом.

Достижения

В США с 2005 года проводятся ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA. В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».

В конкурсе подъёмников робот должен преодолеть установленное расстояние, поднимаясь по вертикальному тросу со скоростью не ниже установленной правилами (в соревнованиях 2007 года нормативы были следующими: длина троса — 100 м, минимальная скорость — 2 м/с скорость которой нужно добиться 10 м/с). Лучший результат 2007 года — преодолённое расстояние в 100 м со средней скоростью 1,8 м/с.

Общий призовой фонд соревнований Space Elevator Games в 2009 году составлял 4 миллиона долларов.

В конкурсе на прочность троса участникам необходимо предоставить двухметровое кольцо из сверхпрочного материала массой не более 2 граммов, которое специальная установка проверяет на разрыв. Для победы в конкурсе прочность троса должна минимум на 50 % превосходить по этому показателю образец, уже имеющийся в распоряжении у NASA. Пока лучший результат принадлежит тросу, выдержавшему нагрузку вплоть до 0,72 тонны.

В этих соревнованиях не принимает участие компания Liftport Group, получившая известность благодаря своим заявлениям запустить космический лифт в 2018 году (позднее этот срок был перенесён на 2031 год). Liftport проводит собственные эксперименты, так в 2006 году роботизированный подъёмник взбирался по прочному канату, натянутому с помощью воздушных шаров. Из полутора километров подъёмнику удалось пройти путь лишь в 460 метров. В августе-сентябре 2012 г компания запустила проект по сбору средств на новые эксперименты с подъемником на сайте Kickstarter. В зависимости от собранной суммы планируется подъём робота на 2 или более километров[9].

В LiftPort Group также заявляли о готовности построить экспериментальный космический лифт на Луне, на базе уже существующих технологий. Президент компании Майкл Лэйн утверждает, что на создание такого лифта может уйти восемь лет. Внимание к проекту заставило компанию поставить новую цель — подготовку проекта и сбор дополнительных средств на начало технико-экономического обоснования так называемого «лунного лифта». По словам Лэйна, сооружение такого лифта займет один год и обойдется в 3 миллиона долларов. На проект LiftGroup уже обратили внимание специалисты NASA. Майкл Лэйн сотрудничал с космическим ведомством США, работая над проектом космического лифта.

На соревнованиях Space Elevator Games с 4 по 6 ноября 2009 года прошло состязание, организованное Spaceward Foundation и NASA, в Южной Калифорнии, на территории центра Драйдена (Dryden Flight Research Center), в границах знаменитой авиабазы Эдвардс. Зачётная длина троса составила 900 метров, трос был поднят при помощи вертолёта. Лидерство заняла компания LaserMotive представившая подъёмник со скоростью 3,95 м/с, что очень близко к требуемой скорости. Всю длину троса лифт преодолел за 3 минуты 49 секунд, на себе лифт нес полезную нагрузку 0,4 кг.[10].

В августе 2010 года компания LaserMotive провела демонстрацию своего последнего изобретения на AUVSI Unmanned Systems Conference в Денвере, штат Колорадо. Новый вид лазера поможет более экономично передавать энергию на большие расстояния, лазер потребляет всего несколько ватт.[11][12]

В феврале 2012 года строительная корпорация «Обаяши» (Япония) объявила о планах по созданию космического лифта к 2050 году посредством использования углеродных нанотрубок.[13]

Схожие проекты

Космический лифт является не единственным из проектов, который использует тросы для вывода спутников на орбиту. Одним из таких проектов является Orbital Skyhook (орбитальный крюк). Skyhook использует не очень длинный, в сравнении с космическим лифтом, трос, который находится на околоземной орбите, и быстро вращается вокруг своей средней части. За счет этого один конец троса движется относительно Земли со сравнительно невысокой скоростью, и на него можно подвешивать грузы с гиперзвуковых самолётов. При этом конструкция Skyhook работает как гигантский маховик — накопитель вращательного момента и кинетической энергии. Достоинством проекта Skyhook является её реализуемость уже при существующих технологиях. Недостатком является то, что на запуск спутников Skyhook расходует энергию своего движения, и эту энергию будет необходимо как-то восполнять.

Вообще в теории космического лифта есть сомнительные моменты, вступающие в противоречие с банальной физикой. Во-первых откуда берется энергия на подъем груза на высоту? Если за счет центробежной силы, как предлагается, значит изменяется момент движения системы, при этом нижний конец троса должен быть жестко закреплен в небесное тело. При этом проблема создания материала троса не снимает проблему закрепления такого троса в материал небесного тела (где на Земле кора состоит из такого материала, чтобы трос такой прочности не вырвало из места закрепления?). Во-вторых сразу же после подвешивания груза на трос произойдет изменение веса тросовой системы и смещение её центра тяжести вниз с геостационара, что приведет к уходу системы от точки равновесия и дальнейшему ускорению и падению на Землю. Чтобы этого избежать придется каждый раз подводить в систему энергию на перемещение противовеса и подъем груза, что делает весьма сомнительным выгоду от использования такого устройства по сравнению с тем же ускорителем или ракетой. Авторы проектов космических лифтов при расчетах зачастую пренебрегают учетом законов сохранения.

Проект Stratosphere Network of Skyscrapers[14] (Стратосферная сеть небоскрёбов). Проект представляет собой сеть орбитальных лифтов, объединённых в шестигранники, покрывающую всю планету. При переходе на следующие этапы строительства, опоры убираются, а каркас сети лифтов используется для постройки на нём стратосферного поселения. Проект предусматривает несколько сфер обитания.

Примечания

  1. Космический лифт и нанотехнологии
  2. В космос — на лифте! // KP.RU
  3. Орбиты космического лифта Общественно-политический и научно-популярный журнал «Российский космос» № 11, 2008
  4. Углеродные нанотрубки на два порядка прочнее стали
  5. MEMBRANA | Мировые новости | Нанотрубки не выдержат космический лифт
  6. Новая графеновая бумага оказалась прочнее стали
  7. Сделан шаг к созданию космического лифта
  8. Лемешко Андрей Викторович. Космический лифт Лемешко А. В./ Space lift Lemeshko A.V
  9. Компания по сбору средств для Liftport на kickstarter’е на эксперименты с роботизированным подъемником
  10. Лифт на небо поставил рекорды с прицелом на будущее
  11. Разработан лазер, который сможет питать космические лифты
  12. LaserMotive to Demonstrate Laser-Powered Helicopter at the AUVSI’s Unmanned Systems North America 2010
  13. «Российская газета» с перепечаткой из ИТАР-ТАСС с отсылкой на японские СМИ
  14. [http://www.evolo.us/competition/stratosphere-network-of-skyscrapers/ Stratosphere Network of Skyscrapers- eVolo | Architecture Magazine]. www.evolo.us. Проверено 5 декабря 2015.
  15. А. Первушин. Мифология космического лифта

Литература

Ссылки

Организации

  • Liftport Group — Компании, занимающиеся космическим лифтом.

Разное

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *